Classification of unit-vector fields in convex polyhedra with tangent boundary conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 387597
(http://iopscience.iop.org/0305-4470/38/34/C02)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 03:56

Please note that terms and conditions apply.

Corrigendum

Classification of unit-vector fields in convex polyhedra with tangent boundary conditions
 J M Robbins and M Zyskin 2004 J. Phys. A: Math. Gen. 37 10609-23

The following corrections should be made. Proposition 2 of section 3 should be proposition 3.3. There is a sign error in equation (39). The correct formula is

$$
\begin{equation*}
\hat{\mathbf{n}}\left(\partial \hat{C}^{a}\right)=-\sum_{c}^{\prime} k^{a c} S^{1 c}+K^{a} . \tag{39}
\end{equation*}
$$

The correct sign for the first term on the right-hand side is obtained by using the orientation on the cleaving surface (in keeping with the stated conventions) to determine the $k^{a c}$ contributions. As a consequence, the formula given in proposition 3.3 should be
$\Omega^{a}=4 \pi w^{a}(\mathbf{s})+2 \pi \sum_{c}^{\prime} \operatorname{sgn}\left(\mathbf{F}^{c} \cdot \mathbf{s}\right) k^{a c}+\sum_{j=2}^{m-1}\left(A\left(\mathbf{e}^{b_{1}}, \mathbf{e}^{b_{j}}, \mathbf{e}^{b_{j+1}}\right)-4 \pi \sigma\left(\mathbf{e}^{b_{1}}, \mathbf{e}^{b_{j}}, \mathbf{e}^{b_{j+1}}\right)\right)$.
doi:10.1088/0305-4470/38/34/C02

